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My perspective & motivation
 The longitudinal microwave instability in storage rings has a long history

– High-frequency perturbation that increases energy spread above threshold current

– Theory for a coasting beam developed in the late 1960's [1,2]: Keil-Schnell criterion

– Coasting beam theory adapted to bunched beams in 1975 [3]: Boussard criterion
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– Eigenvalue formulation given by Laclare [9] 

 Integral equation theory of Pelligrini, Wang, and Krinsky [10-11]
– Provided theoretical basis for the Boussard criterion

– Generally intractable, with no obvious approximation                                                        
beyond Boussard criterion
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 Vlasov-Fokker Planck solvers [12] and/or tracking
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1. Is relatively easy to solve
2. Is more accurate than the 

Boussard theory
3. Provides some additional 

physical insight to MWI



Theoretical approach
 Using phase space coordinates (z, pz) = (s – ct, –δ), the Vlasov equation is
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 Change to action-angle variables of the static problem, (z, pz) → (Ф,I), and isolate the 
time-dependent perturbation due to the wakefields/impedance:
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Theoretical approach
 Using phase space coordinates (z, pz) = (s – ct, –δ), the Vlasov equation is

 Change to action-angle variables of the static problem, (z, pz) → (Ф,I), and isolate the 
time-dependent perturbation due to the wakefields/impedance:

 Linearize the Vlasov equation

 To make further analytic progress, we assume unperturbed motion can be 
approximated by simple harmonic motion (similar to [13] and [8]); then
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Closed form “solution”
 Isolate time dependence for the linear P.D.E.
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 Then, the Vlasov equation becomes

 Solve for F1 by integrating over angle, then multiply by e–ikz and integrate over phase 
space to get bunching equation
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the bunching mode profile from the complex frequency 
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Closed form “solution”
 Isolate time dependence for the linear P.D.E. and define bunching via

 Then, the Vlasov equation becomes

 Solve for F1 by integrating over angle, then multiply by e–ikz and integrate over phase 
space to get bunching equation

 Nice equation that is not really a solution: in general it is very difficult to disentangle 
the bunching mode profile from the complex frequency 

 Similar equation but without synchrotron motion derived in [10-11] and used to justify 
the Boussard criterion by evaluating Ω → 0 limit
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Mode coupling for the microwave 
instability

 Within Sacherer's formalism [5], the microwave instability can be understood in terms of 
classical mode coupling:

– At zero current, perturbations oscillate at harmonics of the synchrotron frequency, so that     
Ω = nωs for integer n.

– As the current increases, the impedance shifts the oscillation frequencies

– Instability occurs when two initially distinct modes become degenerate (merge/collide), 
leading to exponentially growing and damped solutions 
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Eigenvalue formulation of stable 
oscillations and mode coupling

 Within Sacherer's formalism [5], the microwave instability can be understood in terms of 
classical mode coupling:

– At zero current, perturbations oscillate at harmonics of the synchrotron frequency, so that     
Ω = nωs for integer n.

– As the current increases, the impedance shifts the oscillation frequencies

– Instability occurs when two initially distinct modes become degenerate (merge/collide), 
leading to exponentially growing and damped solutions 

 We will apply this reasoning by considering stable oscillations with real frequency Ω.
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– At zero current, perturbations oscillate at harmonics of the synchrotron frequency, so that     
Ω = nωs for integer n.

– As the current increases, the impedance shifts the oscillation frequencies

– Instability occurs when two initially distinct modes become degenerate (merge/collide), 
leading to exponentially growing and damped solutions 

 We will apply this reasoning by considering stable oscillations with real frequency Ω.

 For real Ω, discretizing the integral equation gives an eigenvalue problem
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 For real Ω, discretizing the integral equation gives an eigenvalue problem

M
||
b = λb                     

 Easy to solve with standard packages: the largest real eigenvalue λ gives the current I 
for a given oscillation frequency Ω. 

 One can use this to identify the lowest current at which stable oscillations cease to exist, 
which in turn gives the threshold current for mode coupling and the microwave instability.
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Example: steady-state CSR impedance
 CSR impedance for bending radius ρ is

 Vlasov stability can be expressed in terms of a single dimensionless parameter,
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Predictions and measurements of 
longitudinal collective effects at the 

Advanced Photon Source (APS)
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 Simulated impedance is used in both the theory and elegant [17] tracking simulations

 Elegant simulations include the following elements

1. ILMATRIX: advances linear optics over one turn using tunes and momentum compaction
● Also includes chromatic effects and lowest-order nonlinear terms in both the 

longitudinal and transverse dimensions

2. RFCA: applies the full rf accelerating force once/turn

3. SREFFECTS: applies damping and diffusion associated with synchrotron emission once/turn
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 Elegant simulations include the following elements

1. ILMATRIX: advances linear optics over one turn using tunes and momentum compaction
● Also includes chromatic effects and lowest-order nonlinear terms in both the 

longitudinal and transverse dimensions

2. RFCA: applies the full rf accelerating force once/turn

3. SREFFECTS: applies damping and diffusion associated with synchrotron emission once/turn

4. ZLONGIT: applies longitudinal impedance once/turn

 Tracked 50k – 200k particles over 30k turns to determine equilibrium properties. 
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Extension of theory to currents beyond 
the instability threshold

 Assume that beyond the instability threshold the energy spread increases so as to 
just quench the instability.

 Iterate between Haϊssinski and mode-coupling theory to find self-consistent solution

– Each iteration takes ~10 seconds

– Calculation at any current takes a few minutes
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Energy spread measurements derived from beam size in region of high dispersion and made by
L. Emery and V. Sajaev at the APS in August 2014.



Conclusions & future directions
 We have developed a theoretical framework for the microwave instability that uses the 

mode-coupling interpretation to turn an integral equation into an eigenvalue problem

 The theory is fairly easy to solve numerically for an arbitrary impedance

 The microwave instability threshold is predicted to better than 15% for the steady-state 
CSR impedance, and over a wide range of broad-band resonator parameters

 The theory can be usefully applied at high intensity if one uses the Haϊssinski equilibrium 
bunch length and an energy spread that is inflated to suppress instability 

 We have found good agreement between theory, simulation, and measurements for 
current-dependent bunch lengthening and energy spread increase at the APS

 Extending the theory to proton machines should be easy

 Extending the theory to higher-harmonic rf systems can be done

– Calculations will no longer be as “practical”: each matrix element will involve a 
numerical integral

– Nevertheless, the theory may provide some additional insights:
● Mode merging phenomenon will be obscured by nonlinear potential
● We expect that the real frequencies will map out line where the growth rate 

equals Landau damping rate
● We expect synchrotron radiation damping to play a role as well
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